Question Bank

Class: B.Sc. 2nd Year (Physics)
Section A: Multiple Choice Questions
Choose the correct answer:

1. Electric field lines due to a positive point charge are:

- a) Circular
- b) Radially outward
- c) Radially inward
- d) Parallel lines

2. The SI unit of electric flux is:

- a) Newton
- b) Coulomb
- c) Volt-meter (V·m)
- d) Tesla

3. Gauss's law is most useful in calculating electric field for:

- a) Any arbitrary charge distribution
- b) Highly symmetric charge distributions
- c) Only point charges
- d) Only dipoles

4. The differential form of Gauss's law is:

- a) $\oint E \cdot dA = Q/\epsilon_0$
- b) $\nabla \cdot \mathbf{E} = \rho/\epsilon_0$
- c) $\nabla \times E = 0$
- d) $E = -\nabla V$

5. An electrostatic field is conservative because:

- a) It has zero curl $(\nabla \times E = 0)$
- b) It has non-zero divergence
- c) It follows Biot-Savart's law
- d) It is produced by moving charges

	b) $V = q/(4\pi\epsilon_0 r)$
	c) $V = qr/(4\pi\epsilon_0)$
	d) $V = q/(4\pi\epsilon_0 r^3)$
7.	The work done in moving a charge in an electric field depends on:
	a) The path taken
	b) Only the initial and final positions
	c) The speed of movement
	d) The time taken
8.	Energy density in an electric field is given by:
	a) $\frac{1}{2}$ ϵ_0 E^2
	b) ε ₀ Ε
	c) $\frac{1}{2}$ E ² / ϵ_0
	d) E^2/ϵ_0
9.	The potential inside a uniformly charged spherical shell is:
	a) Zero
	b) Constant (same as on the surface)
	c) Increases with distance
	d) Decreases with distance
10	. The relation between electric field (E) and potential (V) is:
	a) $E = \nabla V$
	b) $\mathbf{E} = -\nabla \mathbf{V}$
	c) $E = \partial V / \partial t$
	d) $E = V/r$
11	. What does the Biot-Savart law help us calculate?
	a) Electric field from charges
	b) Magnetic field from currents
	c) Gravity from masses
	d) Light intensity

Answer: b) Magnetic field from currents

6. Electric potential due to a point charge at a distance r is given by:

a) $V = q/(4\pi\epsilon o r^2)$

12. If you point your thumb in the direction of current in a wire, your fingers curl in the direction of:

- a) Electric field
- b) Magnetic field
- c) Heat flow
- d) Light waves

Answer: b) Magnetic field

13. A charged particle moves through a magnetic field. The force on it is greatest when it moves:

- a) Parallel to the field
- b) Perpendicular to the field
- c) At 45° to the field
- d) It always feels no force

Answer: b) Perpendicular to the field

14. Inside a long straight solenoid, the magnetic field is:

- a) Zero
- b) Strong at the ends only
- c) Same everywhere inside
- d) Circular

Answer: c) Same everywhere inside

15. Two parallel wires carrying current in the same direction will:

- a) Repel each other
- b) Attract each other
- c) Not affect each other
- d) Create light

Answer: b) Attract each other

16. The energy stored in a magnetic field depends on:

- a) Only current
- b) Only magnetic field strength
- c) Both current and field strength
- d) Neither

A	Answer: c) Both current and field strength
17. <i>A</i>	A galvanometer measures:
a	a) Temperature
t	e) Electric current
C	e) Sound waves
C	d) Pressure
A	Answer: b) Electric current
18. V	When a current loop is placed in a magnetic field, it experiences:
a	a) Only linear motion
t	o) Only rotation (torque)
C	e) Both linear and rotational motion
C	d) No effect
A	Answer: b) Only rotation (torque)
19. 7	The magnetic field inside a current-carrying toroid is:
a	a) Zero
t	o) Uniform
C	e) Strongest at the center
Ċ	d) Circular
A	Answer: b) Uniform
20. (Critical damping in a galvanometer means the needle:
a	a) Oscillates forever
t	b) Stops instantly without swinging
C	e) Moves very slowly
Ċ	d) Breaks
A	Answer: b) Stops instantly without swinging
Section	B: Fill in the Blanks
Fill in tl	he blanks with the correct answer:
1. I	Electric field lines never each other. (cross)
2. (Gauss's law in integral form is ($\oint \mathbf{E} \cdot d\mathbf{A} = \mathbf{Q}/\epsilon_0$)
3. 7	The divergence of an electrostatic field $(\nabla \cdot E)$ is equal to (ρ/ϵ_0)

4.	An irrotational field satisfies the condition $(\nabla \times E = 0)$
5.	Electric potential is a quantity (scalar/vector). (scalar)
6.	The potential difference between two points A and B is given by $V_B - V_A = -$
	\int ·dl. (E)
7.	The energy stored in a system of charges is called energy. (potential)
8.	For a uniformly charged infinite plane sheet, the electric field is $(\sigma/2\epsilon_0)$
9.	The potential at infinity due to a point charge is taken as (zero)
10.	The electric field inside a conductor in electrostatic equilibrium is $___$. (zero)
11.	The magnetic field around a straight wire decreases as increases.
	Answer: distance
12.	Magnetic flux is calculated as field strength \times
	Answer: area
13.	A field with zero divergence is called
	Answer: solenoidal
14.	Ampere's law relates magnetic field to
	Answer: current
15.	Energy stored in an inductor = $\frac{1}{2} \times \underline{\hspace{1cm}} \times \text{current}^2$.
	Answer: inductance
16.	The force between two wires depends on their and distance apart.
	Answer: currents
17.	$H=B/\mu_0$ (complete the equation).
	Answer: M
18.	Galvanometer sensitivity measures deflection per unit
	Answer: current
19.	Damping in galvanometers is caused by currents.
	Answer: eddy
20.	Critical damping resistance prevents of the needle.
	Answer: oscillations

Answer in 1-2 lines:

1. Define electric flux.

Ans: Electric flux is the total number of electric field lines passing through a given area $(\Phi = E \cdot A \cdot \cos \theta)$.

2. State Gauss's law in integral form.

Ans: $\oint E \cdot dA = Q$ enclosed/ ε_0 .

3. Why is an electrostatic field conservative?

Ans: Because the work done in moving a charge is path-independent ($\nabla \times E = 0$).

4. Write the relation between electric field (E) and potential (V).

Ans: $E = -\nabla V$ (Electric field is the negative gradient of potential).

5. What is the energy density in an electric field?

Ans: Energy per unit volume = $\frac{1}{2}$ ϵ_0 E^2 .

6. What creates a magnetic field?

Answer: Moving charges (current)

7. How is magnetic flux different from magnetic field?

Answer: Flux is field × area (total "flow"), field is strength at a point

8. Why do parallel currents attract?

Answer: Their magnetic fields interact to pull wires together

9. What does a solenoid do?

Answer: Creates strong uniform magnetic field when current passes through

10. How does a galvanometer work?

Answer: Current creates magnetic force that moves a needle